

L35-B

Local Methods for Modeling, Economic Evaluation, Justification, and Use of the Value of Travel Time Reliability in Transportation Decision Making

Research Goals

- · Select and defend a value or range of values for travel time reliability for the Maryland State Highway network
- Use the VTTR in the Maryland SHA project development process to prioritize operational and capital improvements and determine if (and how) the ranking of projects changes due to the addition of
- · Report for the benefit of others the step-by-step process used to develop, justify, apply, and assess the use of VTTR in the Maryland SHA project evaluation and decision process

Overview of Existing Processes

Congestion Relief Project DM

In addition to safety and congestion, transportation system reliability is another key factor to providing our customers with a good travel experience.

From Forward 2013 SHA Mobility Report

Melinda B. Peters, SHA Administrator

Step 1: Diagnosis

Step 2: Analysis

B/C

Parameter	Unit	Categories	SHA Value*
vот	\$/hr	Passenger	29.82
		Truck driver	20.21
		Cargo	45.40
VTTR	\$/hr	Passenger	22.36
		Truck driver	15.16
		Cargo	34.05
used by SHA in pro	\$/gal	Gasoline	3.69
		Diesel	3.97
	VOT	VOT \$/hr VTTR \$/hr	VOT \$/hr Truck driver Cargo Passenger VTTR \$/hr Truck driver Cargo Cargo S/nal Gasoline

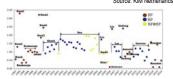
Step 3: Selection

Location	Project Description	Savings	Cost	Cost	Cost	B/C
	,	All Values in (1000's)				
I-695 Outer Loop: MD 144 on ramp continuing to MD 372	Provide additional through lane from on ramp at MD 144 to end of acceleration lane from MD 372. Includes widening and restripting and removal and replacement of retaining wall. Total project length is 2,500ft.	\$27,165	\$16,500	\$1,650	\$18,150	150%
I-695 Inner Loop: US 40 Interchange	Extend inner loop aux lane prior to interchange to connect deceleration lane to WB US40. Widen I-895 inner loop to provide exclusive decel lane for EB US40. Includes retaining wall construction. Total length is 2,200f.	\$14,558	\$10,900	\$1,090	\$11,990	121%
I-695 Outer Loop: US 40 Interchange	Extend outer loop aux lane prior to interchange to connect decel lane to eastbound US 40. Widen I-895 outer loop to provide exclusive decel lane for WB US 40. Total length is 2,200ft.	\$32,894	\$5,000	\$500	\$5,500	598%
I-695 Outer Loop: I- 70/MD 122 to Windsor Mill Rd	Extend I-70 WB to I-895 NB acceleration lane by 500 ft. Extend MD 122 to I-895 NB accel lane by 1,250ft. Requires restriping of I-895, widening to accommodate accel lane and construction of retaining wall.	\$26,665	\$13,300	\$1,330	\$14,630	182%

Deviation from ETA Cost=max[VOT*(Travel Time – ETA),0] · Any other function can be adopted! - Socio-economic attributes - Trip purpose - Time of day

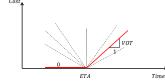
Step 4: Assessment Baltimore Beltway

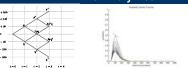
Initial Lessons Learned


- · Many Project DM Processes Involved
- Travel Time Reliability Becoming Increasingly Popular Performance Measure
- TTR Used in One Current Project Prioritization Process

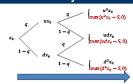
Methodology to Select VTTR

- · Survey Based Methods
- · Literature Review
- · Real Options (PSRC, L11, L17)

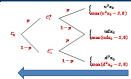

Source: KiM Netherlands Report (2013)


Source: Carrion & Levinson (2012)

Overview of L11


L11	Criticisms
Analogy: Premium set for an insurance policy on guaranteed speed levels	Speed is not directly related to travel cost; therefore speed can not be discounted!
Requirement: Speed is log- normally distributed	What if speed/travel time is not <u>log-normally</u> distributed?
Solution: Closed form Black- Scholes	Black box approach: What is the <u>riskless interest rate</u> and how it should be set? Why slowest speed used to specify the <u>length of option</u> ?

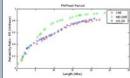
Data Driven Approach Travel Time from Detectors Random Walk - Ups and Down of TT with binary probabilities Random Walk & Binary Tree



Forward Time Binary Tree Construction

q: probability based on "real-world" observations

Backward Time Reliability Valuation



p: probability replicating "artificial" riskless/reliable/certain conditions

Case Studies

- Peak Period
- AM
- PM

The ratio of the Value of Reliability (VOR) to the Value of Travel (VOT) time, known as the Reliability Ratio (RR) ranges from 0.3 to 0.8 for distances of about 2.5 to 25 miles for the PM Peak period pretty consistent with literature values of about 0.3 to 1.5