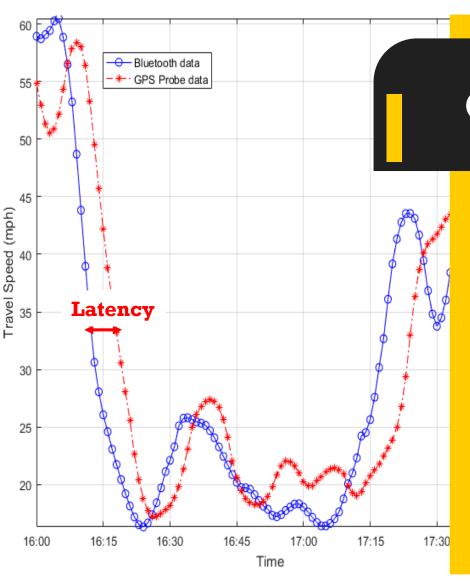
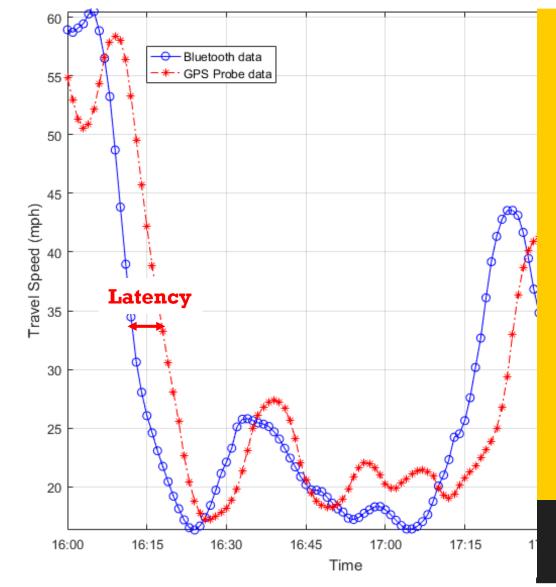


Transportation Research Board 96th Annual Meeting

January 8-12, 2017 • Washington, D.C.


Methodology for Calculating Latency of GPS Probe Data

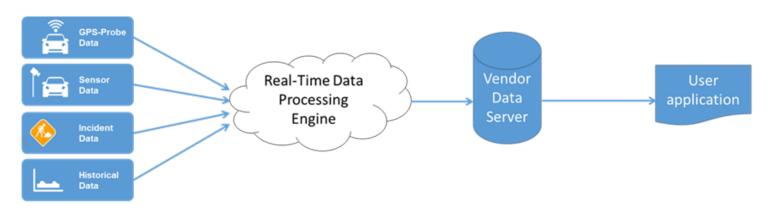
Masoud Hamedi | Zhongxiang Wang | Stanley Young | Jan 10th 2017

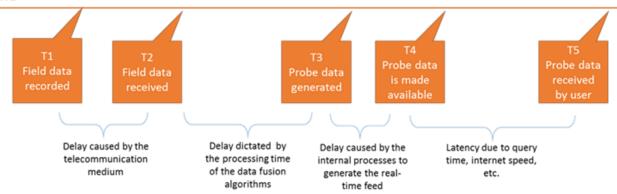


OUTLINE

- 1. INTRODUCTION
- 2. LITERATURE REVIEW
- 3. METHODOLOGY
- 4. CASE STUDY
- 5. CONCLUSION

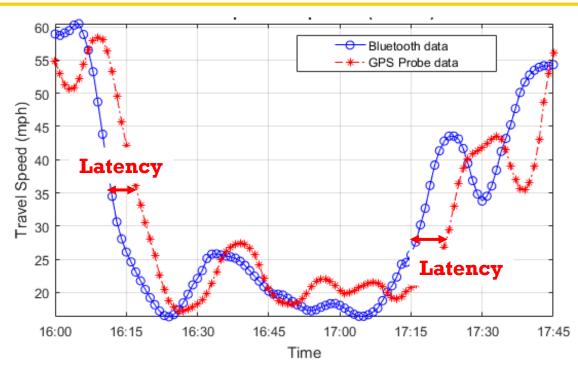
What is Latency?


- LATENCY is the time difference between GPS-probe data and real traffic condition;
- ➤ It describes the punctuality of data;
- ➤ It is crucial to real-time applications.



Sources of Latency

Timeline



Definition of Latency

Latency is defined as "the difference between the time the traffic flow is perturbed and the time that the change in speed is reflected in the data".

Current Research

- ➤ Kim, Seoungbum, and Benjamin Coifman. "Comparing INRIX speed data against concurrent loop detector stations over several months." Transportation Research Part C: Emerging Technologies 49 (2014): 59-72.
 - Objective: Maximizing Correlation Coefficient
 - Average latency : 6.8 minutes
 - Maximum latency could exceed 10 minutes in many time periods
 - o Reference data: Loop detector
 - o Aggregating data into 10 second time interval
- ➤ INRIX.(2007). Traffic Data and Associated Services along the I-95 Corridor
 - INRIX will deliver current speed, travel time, average speed...with latency on average of 4.5 minutes.

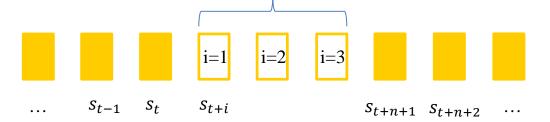
Bluetooth data preparation

- Transferring travel time data into TMC segment space mean speed data;
- Aggregating Bluetooth data into one minute basis.

Data Filtering

The following observations are identified and discarded:

- Observations with unreasonably low or high speeds;
- Observations in a particular time interval that are far from the average of the rest of the speeds observed in the same time interval.

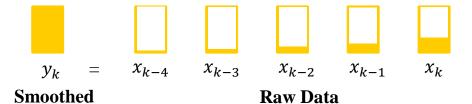


Data Interpolation

The average of the neighboring observations is considered as the travel speed for the missing interval (only applied to less than or equal to 5 mins).

$$S_{t+i} = S_t + \frac{i}{n+1} (S_{t+n+1} - S_t) \quad \forall i = 1, 2, 3$$

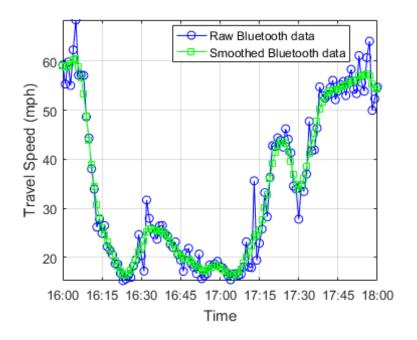
Missing Interval: n=3


Data Smoothing

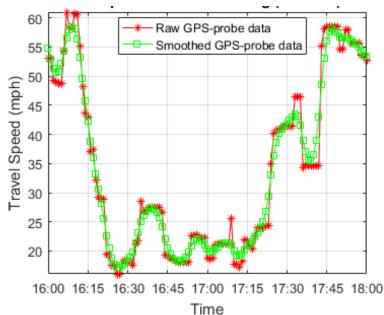
Weighted moving average function

Arithmetic growth of the weights with the previous five time intervals

$$y_k = 0.33x_k + 0.27x_{k-1} + 0.20x_{k-2} + 0.13x_{k-3} + 0.07x_{k-4}$$

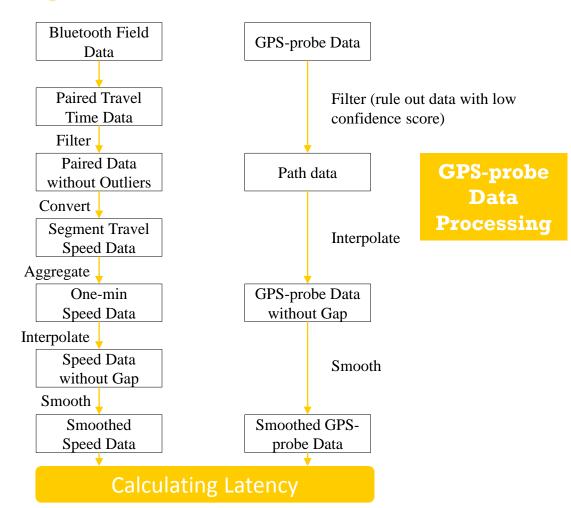


<u>Why filtfilt?</u> Smoothing may introduce undesired horizontal shift into the time series, however in *filtfilt*, forward shift is followed by a backward shift, so the artificial shift is compensated.



Data Smoothing

- ✓ Less noise
- ✓ No shift



Flow chart

Bluetooth
Data
Processing

Objective

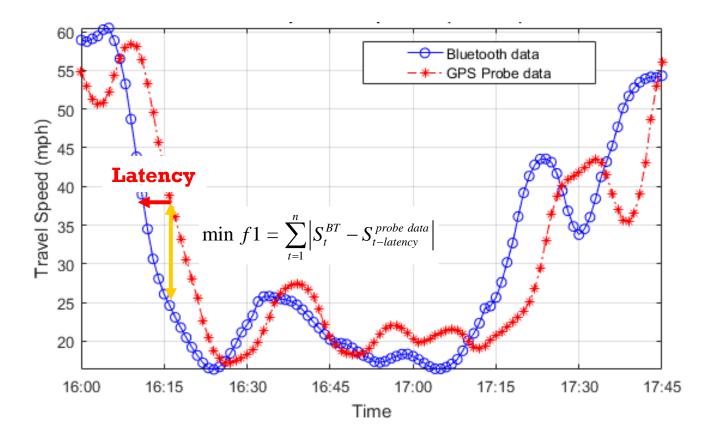
Find the shift distance that maximizes the overlapping of Bluetooth data and GPS-probe data.

min
$$f1 = \sum_{t=1}^{n} \left| S_t^{BT} - S_{t-latency}^{probe\ data} \right|$$
 > Absolute vertical distance between two curves

$$\min f 2 = \sum_{t=1}^{n} \left(S_t^{BT} - S_{t-latency}^{probe\ data} \right)^2 > \text{Gives r}$$
bigger

min $f2 = \sum_{t=1}^{n} (S_t^{BT} - S_{t-latency}^{probe\ data})^2$ Sives more weights to the points that have bigger difference

$$\min f3 = \operatorname{corr}(S_t^{BT}, S_{t-latency}^{probe\ data})$$


min $f3 = \text{corr}(S_t^{BT}, S_{t-latency}^{probe\ data})$ > Statistical representation of the linear relationship between two curves

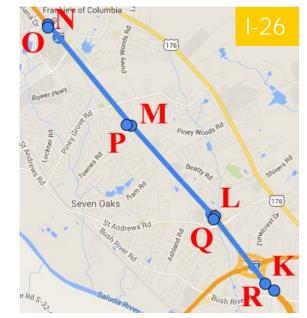
$$lb \le latency \le ub$$

Minimize Absolute Vertical Distance (f1) – as example

Data Selection

Road type: Freeway

Location: South Carolina, I-85 (Exit 48 to Exit 54, 7.15 miles) & I-26 (Exit 103 to Exit 108, 4.28 miles)

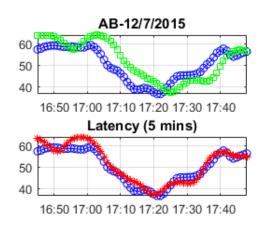

Direction: both directions

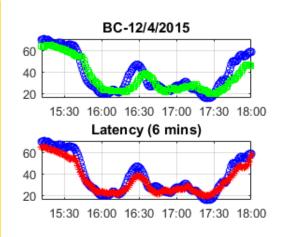
Time: Dec 3, 2015 to Dec15, 2015

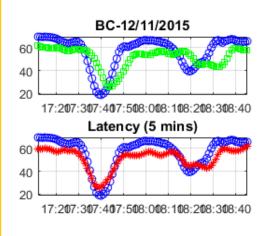
Test scenarios:

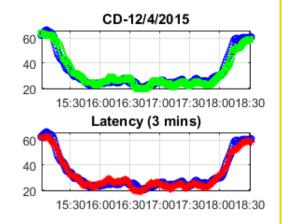
- 1. Morning & Afternoon Peaks;
- 2. Different TMC segments;
- 3. Slowdown & recovery.

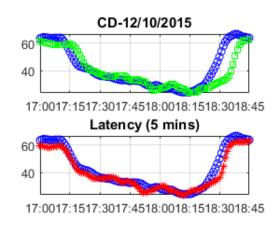


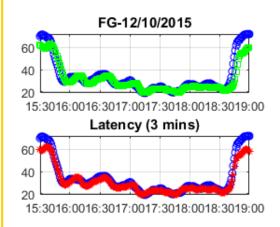

Result Comparison



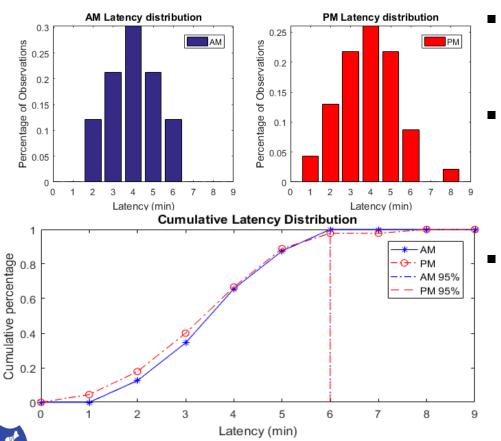





Result Some Afternoon Peaks

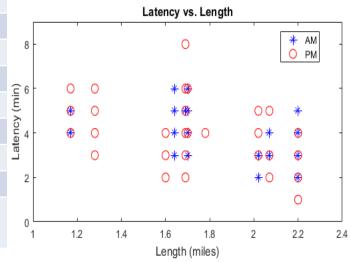


Test One: Average Latency at Peak Periods


Period	Number of Observations	Average Latency (minute)				
		f1 (AVD)	f2 (SVD)	f3 (COR)	Average	
Morning	32	3.96	4.42	4.41	4.26	
Afternoon	45	3.64	4.01	4.19	3.94	

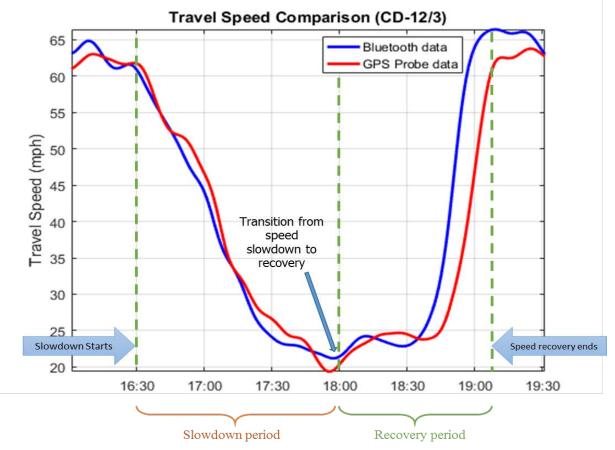
- Latency measured by three different fitness objectives "converged";
- Latency in the morning peaks in slightly higher than that in the afternoon, but not significant;

Test One: Average Latency at Peak Periods


- Similar distributions at morning and afternoon;
- 4 minutes latency has the highest probability/distribution;
 - 95% of latency values fall within 6 minutes for both morning/afternoon peaks.

Test Two: Average Latency at Different Segments

	Length (mile)	Average Latency (minute)				
Segment		f1 (AVD)	f2 (SVD)	f3 (COR)	Avg.	
BC	1.17	4.80	5.00	5.00	4.93	
KL	1.28	4.43	4.86	5.00	4.76	
LM	1.60	3.33	3.83	3.83	3.66	
OP	1.64	4.67	5.00	5.00	4.89	
AB	1.69	4.56	4.56	4.67	4.60	
PQ	1.70	4.78	4.89	4.89	4.85	
MN	1.78	4.00	4.18	3.95	4.04	
GH	2.02	3.40	3.40	3.00	3.27	
CD	2.07	3.92	4.50	4.50	4.31	
FG	2.20	2.76	4.06	4.59	3.80	
Avg. for all segments	1.72	4.06	4.43	4.44	4.31	


- Latency is not significantly correlated with the length of the segment;
- Latency is consistent with previous analysis.

Test Three: Average Latency at Slowdown and Recovery

Test Three: Average Latency at Slowdown and Recovery

Time Period	Scenario	Number of Observations	Average Latency (minute)			
			f1 (AVD)	f2 (SVD)	f3 (COR)	Average
Morning	Slowdown	32	3.55	3.60	3.90	3.68
	Recovery	32	4.76	5.15	4.45	4.83
Afternoon	Slowdown	45	3.43	3.45	3.75	3.54
	Recovery	45	4.70	4.94	4.62	4.76
Overall	Slowdown	77	3.48	3.51	3.81	3.60
	Recovery	77	4.72	5.03	4.55	4.79

Significant reduction in traffic speed slowdown seems to be reflected in probe data with 25% less latency compared to the recovery from slowdowns.

Conclusion

- Analyze latency associated with GPS probe data
- Propose an iterative methodology to quantify the latency
- Conduct case study on two freeway segments at South Carolina (average latency is around 4 mins)

- **\display** Latency:
- is slightly higher at morning peaks than afternoon peaks
- has no significant difference at different segments
- is smaller at slowdown than recovery

Future Research

- Investigate the impact of smoothing
- Pattern matching algorithms applied to arterials
- Larger dataset from multiple probe data vendors
- Test other potential influential attributes
- If exists consistent latency under similar condition (off-line)

Thank you Q & A

Masoud Hamedi

Senior Research Scientist
Center for Advanced Transportation Technology
University of Maryland
5000 College Ave
College Park, MD 20740
Email: masoud@umd.edu | Phone:301-405-2350

Zhongxiang Wang

Graduate Student
Department of Civil & Environmental Engineering
University of Maryland
Email: zxwang25@umd.edu

Stanley Young

Advanced Transportation and Urban Scientist National Renewable Energy Laboratory Email: stanley.young@nrel.gov

