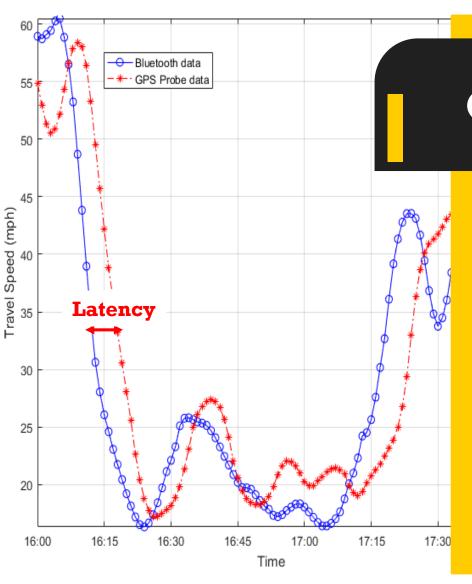
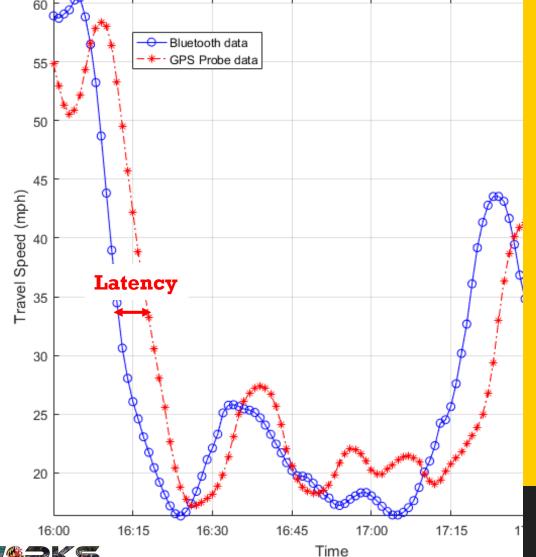
I-95 Corridor Coalition's Vehicle Probe Project

A cross-vendor and cross-state analysis of the GPS-probe data latency



Transportation Research Board 97th Annual Meeting

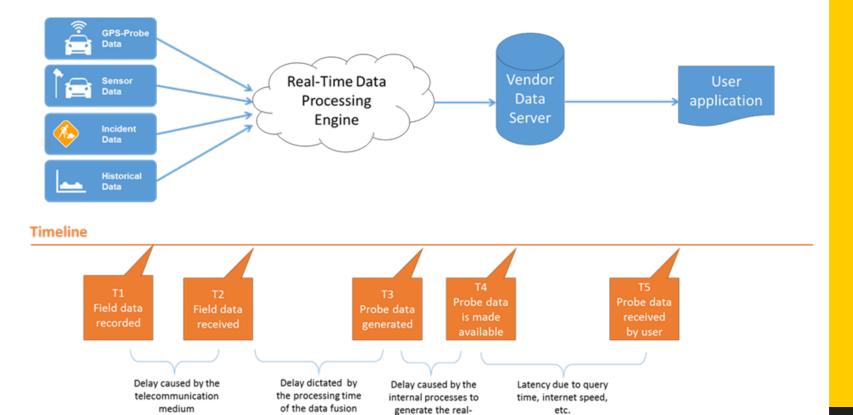
January 7–11, 2018 • Washington, D.C.



OUTLINE

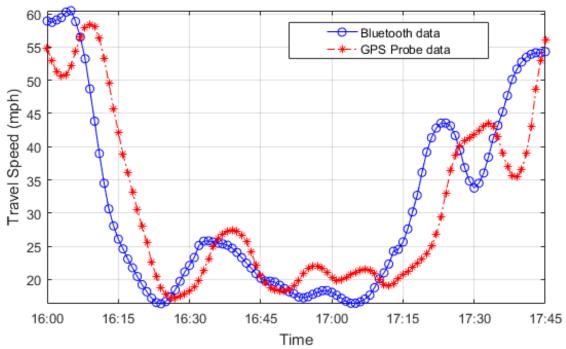
- 1. INTRODUCTION
- 2. LITERATURE REVIEW
- 3. METHODOLOGY
- 4. CASE STUDY
- 5. CONCLUSIONS

What is Latency?


- LATENCY is the time difference between GPS-probe data and real traffic condition;
- ➤ It describes the punctuality of data;
- ➤ It is crucial to real-time applications.

Where does the latency come from?

time feed



algorithms

Definition of Latency

Latency is defined as "the difference between the time the traffic flow is perturbed and the time that the change in speed is reflected in the data."

Related Research

- ➤ Kim, Seoungbum, and Benjamin Coifman. "Comparing INRIX speed data against concurrent loop detector stations over several months." Transportation Research Part C: Emerging Technologies 49 (2014): 59-72.
 - Objective: Maximizing Correlation Coefficient
 - Average latency : 6.8 minutes
 - Maximum latency could exceed 10 minutes in many time periods
 - o Reference data: Loop detector
 - o Aggregating data into 10 second time interval

Related Research

- ➤ INRIX.(2007). Traffic Data and Associated Services along the I-95 Corridor
 - INRIX will deliver current speed, travel time, average speed...with latency on average of 4.5 minutes.
- ➤ Wang, Z., Hamedi, M. and Young, S., 2017. A Methodology for Calculating Latency of GPS Probe Data. Transportation Research Record: Journal of the Transportation Research Board, No. 2645. DOI: 10.3141/2645-09.
 - Propose methodology to measure GPS-probe data latency in comparing to Bluetooth data. It is shown to be effective, but only on a limited dataset for one GPS-probe data vendor.

Contributions

- ✓ Applying the latency measurement methodology (Wang et. al 2017) to a larger dataset
 - ✓ Expanding to three states
 - ✓ Data from three major probe data vendors
- ✓ Developing a robust algorithm for automating slowdown episode detection
- ✓ Revisiting conclusions of the previous research based on the extended data set;
- **✓** Analyzing latency for different vendors to describe:
 - > Latency distribution for different vendors;
 - Latency distribution at slowdown and recovery periods;
 - Latency distribution at different times of the day;
 - Latency distribution for segments of various lengths;
 - > Statistical comparison of latency across three vendors.

Bluetooth/WiFi data preparation

- Matching and filtering high resolution re-identification based travel time observations to generate segment space mean speed data;
- Aggregating reference data in one minute intervals.

Data Filtering

The following observations are identified and discarded:

- Observations with unreasonably low or high speeds;
- Observations in a particular time interval that are far from the average of the rest of the speeds observed in the same time interval.

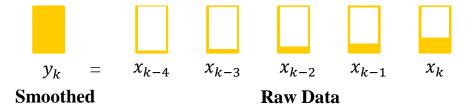


Data Interpolation

The average of the neighboring observations is considered as the travel speed for the missing interval (only applied to less than or equal to 5 mins).

$$s_{t+i} = s_t + \frac{i}{n+1} (s_{t+n+1} - s_t) \quad \forall i = 1, 2, 3$$

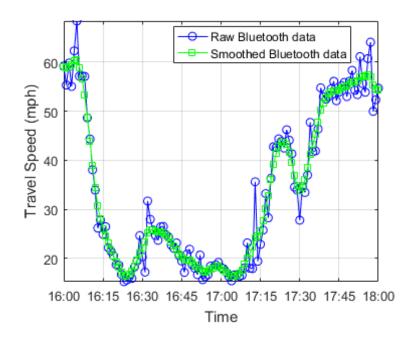
Missing Interval: n=3


Data Smoothing

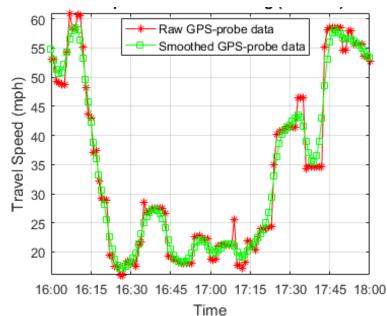
Weighted moving average function

Arithmetic growth of the weights with the previous five time intervals

$$y_k = 0.33x_k + 0.27x_{k-1} + 0.20x_{k-2} + 0.13x_{k-3} + 0.07x_{k-4}$$

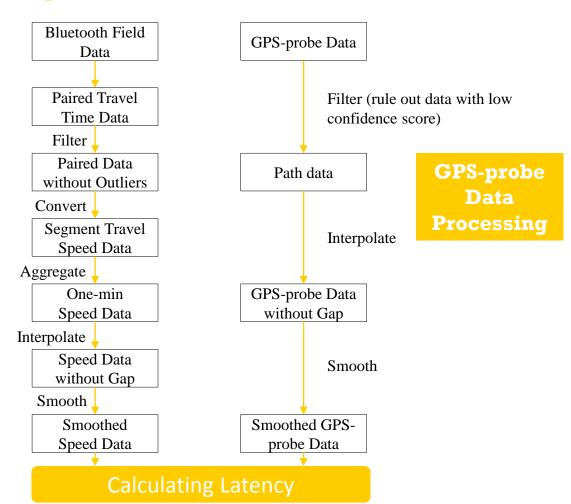


<u>Why Zero-phase digital filtering?</u> Smoothing may introduce undesired horizontal shift into the time series, however in *Zero-phase digital filtering*, forward shift is followed by a reverse shift, so the artificial shift is compensated.



Data Smoothing

- ✓ Less noise
- ✓ No shift



Flow chart

Bluetooth
Data
Processing

Objective

Find the shift distance that maximizes the overlapping of Bluetooth data and GPS-probe data.

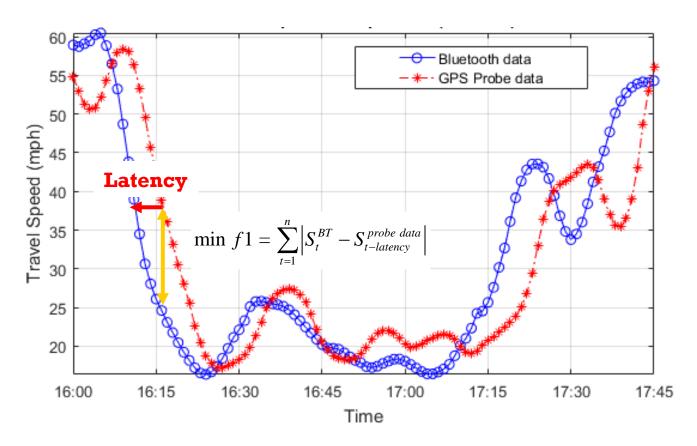
$$\min f1 = \sum_{t=1}^{n} \left| S_t^{BT} - S_{t-latency}^{probe\ data} \right|$$

min $f1 = \sum_{t=1}^{n} \left| S_t^{BT} - S_{t-latency}^{probe\ data} \right|$ (AVD) Absolute vertical distance between two curves

$$\min f 2 = \sum_{t=1}^{n} \left(S_t^{BT} - S_{t-latency}^{probe\ data} \right)^2$$

min
$$f2 = \sum_{t=1}^{n} \left(S_t^{BT} - S_{t-latency}^{probe\ data} \right)^2$$
 > (SVD) Squared vertical distance, which gives more weights to the points that have bigger difference

$$\min f3 = \operatorname{corr}(S_t^{BT}, S_{t-latency}^{probe\ data})$$


min $f3 = \text{corr}(S_t^{BT}, S_{t-latencv}^{probe\ data})$ > (COR) Statistical representation of the linear relationship between two curves

 $lb \le latency \le ub$

Minimize Absolute Vertical Distance (f1) – as example

Data Selection

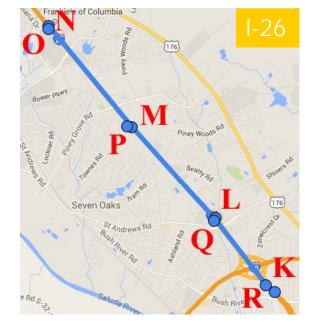
	State	Road	Start Point	End Point	Length (mile)	Date
	South	I-85	US-276/Exit 48	SC-14/Exit 56	7.15	12/03/2015
	Carolina	I-26	Bush River Rd/Exit 108	Harbison Blvd/Exit 103	4.47	12/17/2015
	New Hampshire	I-89	I-93	Stickney Hill Rd/Exit 3	3.54	07/40/2046
		I-93	I-393/US-202/US- 4/Exit 15	Hackett Hill Rd/Exit 11	15.82	07/10/2016
		I-93	NH-28/Rockingham Rd/Exit 5	NH-102/Nashua Rd/Exit 4	3.63	07/24/2016
	North Carolina	I-240	US-70/Charlotte St/Exit 5B	US-23/US-19/Exit 3	2.23	12/16/2016
		I-40	NC-191/Exit 47	US-23/US-19/Exit 44	2.56	
		I-26	I-40/ Exit 46 A/US 74	I-26/Exit 37	14.43	12/26/2016

Data Selection

Road type: Freeway

Location: South Carolina,

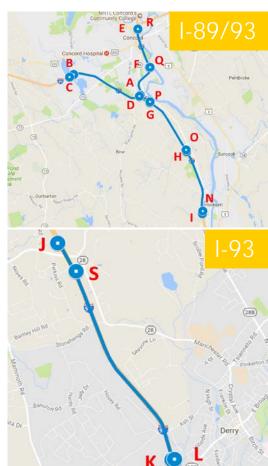

New Hampshire, North Carolina


Direction: both directions

Time: 2 weeks for each state

Segment length: 1~3.5 mile

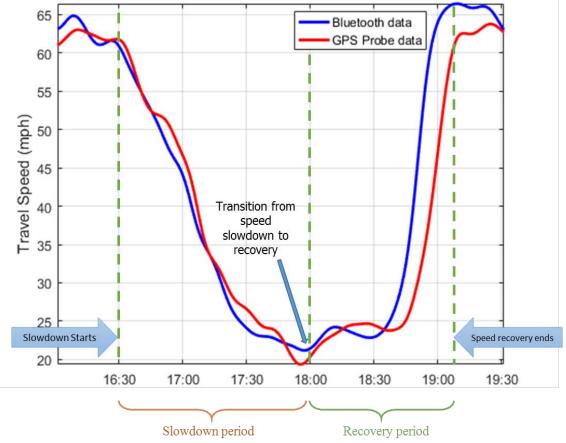
South Carolina



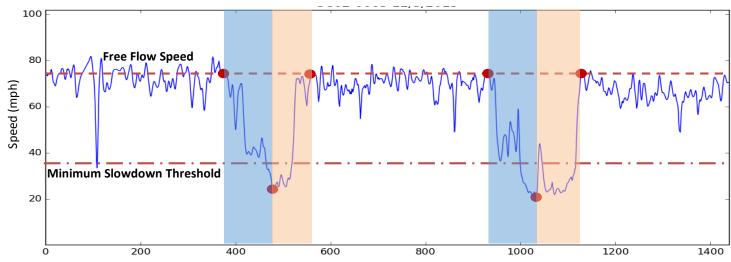
Data Selection

New Hampshire

North Carolina



Data Preparation

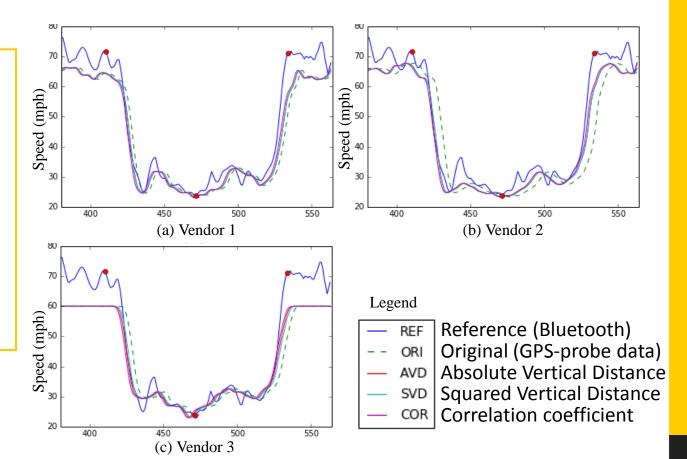

Capturing Slowdown and Recovery Episodes

Data Preparation: Automated Speed Pattern Recognition Filter (ASPRF)

Minimum Slowdown Threshold = 0.4 imes Free Flow Speed

Time

State	# of paths	# of days	# of Slowdown and Recovery Episodes			
South Carolina	14	15	72			
New Hampshire	12	15	26			
North Carolina	15	11	18			
Total	41	41	116			


Sample Result

South Carolina

12/10/2015

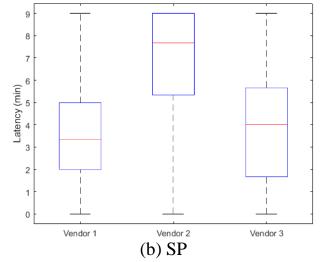
Length: 2.3 miles

Data: 3 vendors

Results Average Latency for all segments over all periods (minute)

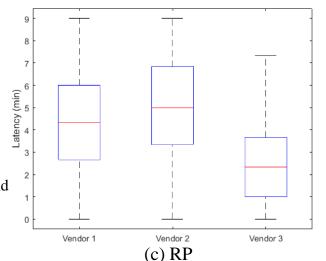
		Vendor 1			Vendor 2			Vendor 3					
		AVD	SVD	COR	Mean	AVD	SVD	COR	Mean	AVD	SVD	COR	Mean
	SRE	3.9	4.4	4.6	4.3	6.1	6.2	6.2	6.2	2.9	3.1	3.1	3.0
SC	SP	3.6	3.6	4.0	3.7	6.7	6.8	6.6	6.7	4.4	4.3	3.8	4.2
	RP	4.7	5.3	4.0	4.7	5.0	5.2	5.0	5.1	2.0	2.4	2.5	2.3
	SRE	3.3	3.4	3.6	3.4	5.6	6.0	6.4	6.0	2.3	2.5	2.7	2.5
NH	SP	3.3	3.2	3.2	3.2	7.0	7.0	6.7	6.9	3.5	3.0	3.2	3.2
	RP	4.0	4.2	3.9	4.0	3.6	3.7	4.7	4.0	2.9	3.5	2.6	3.0
	SRE	3.5	4.1	4.1	3.9	7.3	7.8	7.3	7.5	3.2	3.2	2.7	3.0
NC	SP	4.6	4.6	3.6	4.2	7.7	7.8	7.4	7.6	3.2	2.9	2.5	2.9
	RP	3.4	3.7	4.1	3.7	5.9	6.5	6.8	6.4	3.2	3.1	3.8	3.4

SC: South Carolina, **NH**: New Hampshire, **NC**: North Carolina; **AVD**: Absolute vertical distance; **SVD**: Squared vertical distance; **COR**: correlation coefficient; **SRE**: Slowdown and recovery episode, **SP**: Slowdown period, **RP**: recovery period



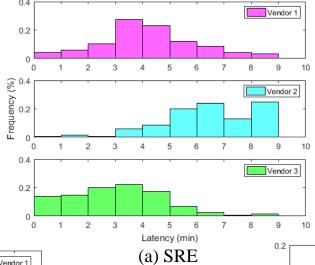
Results

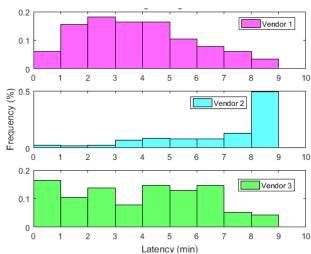
Latency comparison between speed slowdown and recovery periods

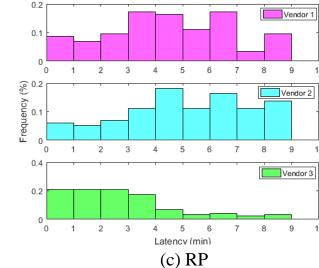


- ✓ Comparison results vary from vendor to vendor.
- ✓ Latency is different during slowdown and recovery.

Note: whiskers represent the 1.5 interquartile range of the lower and upper quartiles, corresponding to approximately +/-2.7 times standard deviation and 99.3 percent coverage if the latency is normally distributed.





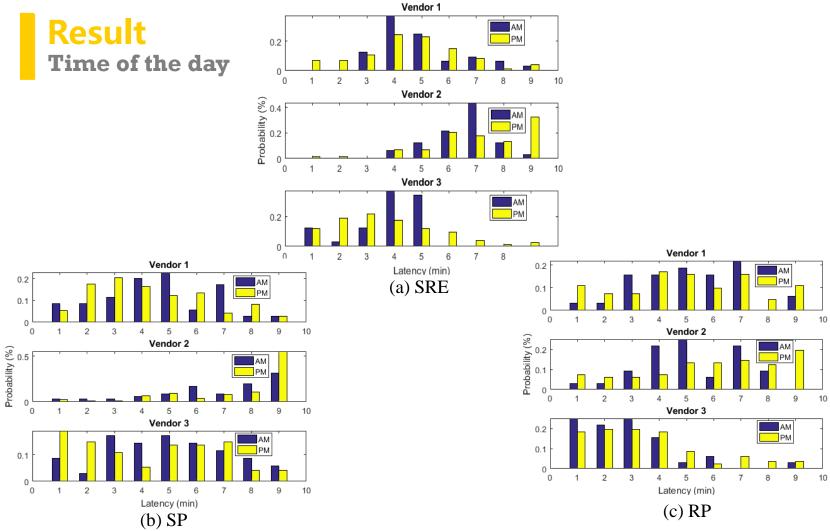


Results

Latency histogram

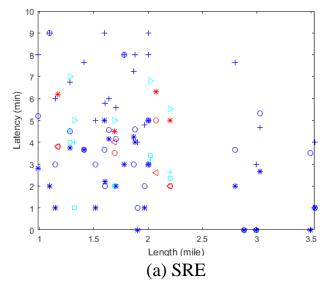
(b) SP
I-95 CORRIDOR
COALITION

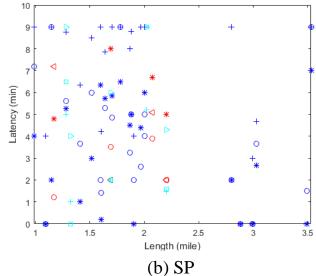
Result

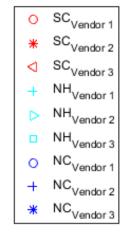

Is difference in probe data latency statistically significant between pair of vendors?

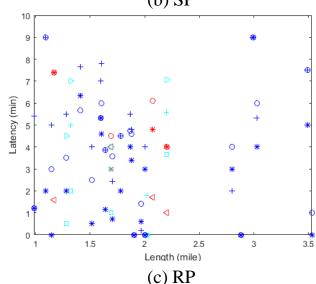
		t-stat		Chi-square			
P-value	Vendor 1	Vendor 2	Vendor 3	Vendor 1	Vendor 2	Vendor 3	
Vendor 1		-9.370	4.729		2.685	0.598	
Vendor 2	0.000		14.185	0.975		7.454	
Vendor 3	0.000	0.000		1.000	0.590		

- ✓ Statistically speaking, average latency among vendors is different.
- ✓ The latency distribution is statistically independent among vendors.








Result Segment length

✓ There is no strong relationship between the segment length and latency for all vendors.

ConclusionS

- Across all vendors and for all tested freeway segments, average latency is found to be 4.4 minutes with standard deviation of 2.3 minutes;
- Average latency is statistically different among vendors;
- No strong correlation between latency and time of the day, and also latency and segment length were found.
- Instead of interpreting the latency as a single number,
 distribution of latency should be measured and evaluated

Future Research

- Investigating the latency of GPS-probe data on signalized arterials.
- Studying potential impact of traffic volume on latency of probe data.
- Keep analyzing more cases in future to study long time trend of latency improvement for different vendors
- Understanding implications of the latency and its distribution on real-time applications and exploring solutions to compensate for latency

Thank you Q & A

Masoud Hamedi*

Senior Research Scientist
Center for Advanced Transportation Technology
University of Maryland
5000 College Ave
College Park, MD 20740
Email: masoud@umd.edu | Phone:301-405-2350

Zhongxiang Wang

Graduate Student
Department of Civil & Environmental Engineering
University of Maryland
Email: zxwang25@umd.edu

Elham Sharifi

Faculty Research Assistant
Center for Advanced Transportation Technology
University of Maryland
Email: esharifi@umd.edu

Stanley Young

Advanced Transportation and Urban Scientist National Renewable Energy Laboratory

